祝宝山研究员、博士生导师

办公电话:010-62796797

电子邮箱:bszhu@mail.tsinghua.edu.cn

通讯地址:清华大学能源与动力工程系

邮编:100084



教育背景


1985.9-1990.7 清华大学水利系流体机械专业 本科

1992.9-1994.7 清华大学水利系 流体机械及流体工程 硕士

1995.10-1999.3 日本横滨国立大学生产工学专攻 博士


工作履历

1990.8-1992.8 清华大学水利系 助教

1994.8-1995.9 航天部第一研究院第十一所 工程师

1999.10-2003.12 日本横滨国立大学生产工学科 文部教官助手

2004.1-现在 清华大学热能工程系 副教授、研究员


学术兼职

国际水利与环境工程学会会员

中国机械工程协会高级会员

中国水利学会泵及泵站专业委员会委员

能源行业水电水力机械标准化技术委员会副秘书长

流体及动力机械教育部重点实验室副主任


研究领域

流体机械及工程:主要从事流体机械流动理论、流体诱发结构振动和控制以及计算流体力学研究


研究概况

主要开展的研究方向为:

(1)流体机械流动理论、流动分析和流动诊断;

(2)流体机械涡动力学、涡方法及其应用

(3)流体机械设计及优化;

(4)流体机械的多相流动及多场耦合。

负责或参加了国家科技攻关项目一项、国家863计划项目一项,国家支撑计划项目二项,国家重点研发计划一项,自然科学基金项目五项、国防基金预研项目一项,清华大学自主科研计划一项。另外,与国内外企业、设计单位开展合作项目四十余项。

奖励与荣誉

基于涡动力学理论的水力机械流动分析和优化设计,教育部科技进步二等奖,2013年,排名第1。


学术成果


教材:流体力学,北京大学出版社,2013年8月。


主要专利:


(1)“一种闭式叶轮整体数控车削、铣削加工制造方法” ,  ZL202011311807.9

(2)“能量储存装置” ,  ZL201920465782.4

(3)“一种抑制涡流的离心泵压水室及具有其的离心泵” ,  ZL201410447324.X

(4)“离心泵叶轮” ,  ZL201410501055.0

(5)“大倾斜高压边的混流式水泵水轮机转轮” ,  ZL201420293965.X

(6)“一种抑制水轮机尾水管空化涡带的射流槽结构” ,  ZL201210276351.6


代表性论文:

(65) Saroj Gautam, Nirmal Acharya, Ram Lama, Sailesh Chitrakar, Hari Prasad Neopane, Baoshan Zhu, Ole Gunnar Dahlhaug. Numerical and experimental investigation of erosive waer in Francis runner blade optimized for sediment laden hydropower projects in Nepal. Sustainable Energy Technologies and Assessments 51, 2022, 101594.

(64) Wenliang Ke, Islam Hashem, Wenwu Zhang, Baoshan Zhu. Influence of leading-edge tubercles on the aerodynamic performance of a horizontal-axis wind turbine: A numerical study. Energy, 2022, 239: 122186.

(63) Islam Hashem, Baoshan Zhu. Metamodeling-based parametric optimization of a bio-inspired Savonius-type hydrokinetic turbine. .Renewable Energy 2021, 180: 560-576.

(62) Ravi Koirala, Quoc Linh Ve, Baoshan Zhu, Kiao Inthavong and Abhijit Date. A Review on Process and Practices in Operation and Design Modification of Ejectors. Fluids, 2021,6:409.

(61) Xing Xie, Zhenlin Li, Baoshan Zhu, Hong Wang and Wenwu Zhang. Multi-objective optimization design of a centrifugal impeller by positioning splitters using GMDH, NSGA- and entropy weight-TOPSIS. Journal of Mechanical Science and Technology, 202135(5):1-14.

(60) Xing Xie, Zhenlin Li, Baoshan Zhu and Hong Wang. Multi-objective optimization design of a centrifugal impeller considering both aerodynamic efficiency and structural machinability. Engineering Computations, 2021: 38(6): 2755-2780.

(59) Xinrui Li, Zhenggui Li, Baoshan Zhu, Jie Cheng, Wangxu Li, and Jiuyue Yue. Optimal design of large gap magnetic fluid sealing device in a liquid environment, Journal of Magnetism and Magnetic Materials 540 (2021), 168472.

(58) Xinrui Li, Zhenggui Li, Baoshan Zhu and Weijun Wang. Effect of Tip Clearance Size on Tubular Turbine Leakage Characteristics, Process 20219, 1481.

(57) Wenwu Zhang, Xing Xie, Baoshan Zhu, Zhe Ma. Analysis of Phase Interaction and Gas Holdup in a Multistage Multiphase Rotodynamic Pump Based on a Modified Euler Two-Fluid Model. Renewable Energy, 2021, 164:1496-1507.

(56) Wenwu Zhang, Baoshan Zhu, Zhiyi Yu. Characteristics of Bubble Motion and Distribution in a Multiphase Rotodynamic Pump. Journal of Petroleum Science and Engineering, 2020, 193:107435-111.

(55) Xing Xie, Zhenlin Li, Baoshan Zhu, Hong Wang. Suppression of secondary flows in a centrifugal impeller by optimisation design. Engineering Computations, Vol.37, Iss.9: 3023-3044, 2020(9).

(54) S. Gautam, H.P. Neopane, B.S.Thapa, S. Chitrakar and B. Zhu. Numerical Investigation of the Effects of Leakage Flow From Guide Vanes of Francis Turbines using Alternative Clearance Gap Method. Journal of Applied Fluid Mechanics, 2020, 13(5):1407-1419.

(53) Wenwu Zhang, Zhenmu Chen, Baoshan Zhu, Fei Zhang. Pressure Fluctuation and Flow Instability in S-shaped Region of a Reversible Pump-Turbine. Renewable Energy 2020, 154:826-840.

(52) Ning Huang, Zhenlin Li, Baoshan Zhu. Cavitating Flow Suppression in the Draft Tube of a Cryogenic Turbine Expander Through Runner Optimization. Processes 2020 8 270.

(51) Zhe Ma, Baoshan Zhu. Pressure Fluctuation in Vaneless Space of Pump-Turbine With Large Blade Lean Runners in the S-Shaped Region. Renewable Energy 2020, 133:1283-1295.

(50) Jiaxing LuXiaobing LiuYongzhong ZengBaoshan ZhuBo Hu, Shouqi Yuan, and Hong Hua. Detection of the Flow State for a Centrifugal Pump Based on Vibration, Energies 2020 12, 589.

(49) Saroj Gautam, Hari Prasad Neopane, Nirmal Acharya, Sailesh Chitrakar, Biraj Singh Thapa, Baoshan Zhu. Sediment Erosion in Low Specific Speed Francis Turbines: A Case Study on Effects and Causes. Wear, 2020, 442-443:203152.

(48) Jiaxing LuXiaobing LiuYongzhong ZengBaoshan ZhuBo Hu and Hong Hua. Investigation of the Noise Induced by Unstable Flow in a Centrifugal Pump. Energies 2019 12:3066.

(47) Jianhua Pang, Baoshan Zhu, Zhi Zong. A Numerical Simulation Model for the Vortex Induced Vibration of Flexible Risers Using Dynamic Stiffness Matrices. Ocean Engineering2019,178:306-320.

(46) Zhe Ma, Baoshan Zhu, Cong Rao and Yonghong Shangguan. Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner, Energies 2019 12 307.

(45) Ravi Koirala, Hari Prasad Neopane, Baoshan Zhu, Bhola Thapa. Effect of Sediment of Erosion on Flow Around Guide Vanes of Francis Turbine, Renewable Energy, 2019, 136:1022-1027.

(44) Ashkan ShokrianHossein Mobli, Abbas Akbarnia, Ali Jafari, Hossein Mousazade, Baoshan Zhu. A study on the three-phase Separator Machine (Tricanter) for Olive Oil Extraction. Journal of Theoretical and Applied Mechanics, Sofia, 2019, 49:233-240.

(43) Zhiyi Yu, Wenwu Zhang, Baoshan Zhu, and Yongjiang Li. Numerical Analysis for the Effect of Tip Clearance in a Low Specific Speed Mixed-Flow Pump, Advances in Mechanical Engineering, 2019, 11(3):1-12.

(42) Baoshan Zhu, Lei Tan, Xuhe Wang, Zhe Ma. Investigation on Flow Characteristics of Pump-Turbine Runners With Large Blade Lean, Journal of Fluids Engineering, 2018, 140:031101-1

(41) Yun Xu, Lei Tan, Yabin Liu, Yue Hao, Baoshan Zhu and Shuliang Cao. Pressure fluctuation and flow pattern of a mixed-flow pump under design and off-design conditions, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2018, 232(13): 2430-2440.

(40) Linhai Liu, Baoshan Zhu, Li Bai, Xiaobing Liu, and Yue Zhao. Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization, Energies, 2017,10,1169.

(39) Ravi Koirala, Hari Prasad Neopane, Shrestha Oblique, Baoshan Zhu, Bhola Thapa. Selction of Guide Vane Profile for Erosion Handling in Francis Turbines. Renewable Energy 112 (2017):328-336.

(38) Wenwu Zhang, Zhiyi Yu, Baoshan Zhu. Numerical Study of Pressure Fluctuation in a Gas-Liquid Two-Phase Mixed-Flow Pump, Energies 2017, 10, 634.

(37) Ravi Koirala, Bhola Thapa, Hari Prasad Neopane, Baoshan Zhu. A Review on Flow and Sediment Erosion in Guide Vanes of Francis Turbines, Renewable and Sustainable Energy Reviews 75 (2017):1054-1065.

(36) Wenwu Zhang, Zhiyi Yu and Baoshan Zhu. Influence of Tip Clearance on Pressure Fluctuation in Low Specific Speed Mixed-Flow Pump Passage. Energies 2017, 10, 148.

(35) Zijie Wang, Baoshan Zhu, Xuhe Wang and Daqing Qin. Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine. Energies 2017, 10, 96.

(34) Yue Hao, Lei Tan, Yabin Liu, Yun Xu, Jinsong Zhang and Baoshan Zhu. Energy Performance and Radial Force of a Mixed-Flow Pump with Symmetrical and Unsymmetrical Tip Clearances. Energies  2017, 10, 57.

(33) Wenwu Zhang, Baoshan Zhu, Zhiyi Yu and Ce Yang. Numerical Study of Pressure Fluctuation in the Whole Flow Passage of a Low Specific Speed Mixed-Flow Pump. Advnces in Mechanical Engineering, 2017, 9(5):1-11.

(32) Ravi Koirala, Bhola Thapa, Hari Prasad Neopane, Baoshan Zhu, Balendra Chhetry. Sediment erosion in guide vanes of Francis turbine: A case study of Kaligandaki Hydropower Plant, Nepal. Wear, 362-363 (2016), 53-60.

(31) Ravi Koirala, Baoshan Zhu, Hari Neopane. Effect of Guide Vane Clearance Gap on Francis Turbine Performance. Energies, 2016, 9, 275.

(30) Zhiyi Yu, Baoshan Zhu, Shuliang Cao. Interphase force analysis for air-water bubbly flow in a multiphase rotodynamic pump. Engineering Computations, 32(7): 2166-2180, 2015.

(29) Lei Tan, Baoshan Zhu, Yuchuan WangShuliang Cao, Shaobo Gui. Numerical study on characteristics of unsteady flow in a centrifugal pump volute at partial load condition. Engineering Computations, 32(6) : 1549-1566, 2015.

(28) Yuchuan WangLei Tan, Baoshan Zhu, Shuliang Cao, Binbin WangNumerical investigation of influence of inlet guide vanes on unsteady flow in a centrifugal pump. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(18):3425-3416, 2015.

(27) Baoshan Zhu, Xuhe Wang, Lei Tan, Dongyue Zhou, Yue Zhao, Shuliang Cao. Optimization design of a reversible pump-turbine runner with high efficiency and stability. Renewable Energy, 81: 366-376, 2015.

(26) Tan Lei, Zhu Bao Shan, Cao Shu Liang, Wang Yu Chuan and Wang Bin Bin. Numerical simulation of unsteady cavitation flow in a centrifugal pump at off-design conditions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228(11):1994-2006, 2014.

(25) TAN Lei, ZHU Baoshan, CAO shuliang, WANG YuMing. Influence of Blade Wrap angle on Centrifugal Pump Performance by Numerical and Experimental Study, Chinese Journal of Mechanical Engineering, 27(1):949-952, 2014.

(24) Lei Tan, Baoshan Zhu, Yuchuan Wang, Shuliang Cao, Kaihong Liang. Turbulent flow simulation using large eddy simulation combined with characteristic-based split scheme. Computers & Fluids, 94:161-172, 2014.

(23) Zhiyi Yu, Baoshan Zhu, Shuliang Cao, and Ying Liu. Effect of Virtual Mass Force on the Mixed Transport Process in a Multiphase Rotodynamic Pump. Advances in Mechanical Engineering, Vol. 2014, Article ID 958352, 7 pages, 2014.

(22) Lei Tan, Baoshan Zhu, Shuliang Cao, Yuchuan Wang and Binbin Wang. Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump. Energies, 7(2) :1050-1065, 2014.

(21) Ki-Deok Ro, Baoshan Zhu. Numerical calculation of unsteady flow fields: feasibility of applying the Weis-Fogh mechanism to water turbines. ASME Journal of Fluid Engineering, 135: 101103-16, 2013.

(20) TAN Lei, ZHU Baoshan, CAO shuliang, WANG YuMing. Cavitation flow simulation for a centrifugal pump at a low flow rate, Chinese Science Bulletin, 58(8): 949-952, 2013.

(19) Wang Hong, Zhu Baoshan, Lin Jianshu, Ye Changliu. A Thermohydrodynamic Analysis of Dry Gas Seals for High-Temperature Gas-Cooled Reactor. ASME Journal of Tribology, 135: 021701-19, 2013.

(18) Baoshan Zhu, Ki-Deok Ro. Solution of three-dimensional viscous flows using integral velocity-vorticity formulation. Engineering Analysis with Boundary Elements, 36:1942-1951, 2012.

(17) Tan Lei, Cao ShuLiang, Wang YuMing, Zhu Baoshan. Direct and inverse iterative design method for centrifugal pump impellers. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(6): 764-775, 2012

(16) Qingsheng Wei, Baoshan Zhu, Young-Do Choi. Internal flow characteristics in the draft tube of a Francis turbine. Journal of the Korean Society of Marine Engineering. 36(5):618-626, 2012.

(15) Baoshan Zhu, Hong Wang, Longbu Wang and Shuliang Cao. Three-dimensional vortex simulation of unsteady flow in hydraulic turbines. International Journal for Numerical Methods in Fluids, 69:1679-1700, 2012.

(14) Qun Zhang, Baoshan Zhu. An integrated coupling framework for highly nonlinear fluid-structure problems. Computers & Fluids, 60:36-48, 2012.

(13) Ki-Deok Ro, Baoshan Zhu, Michihisa Tsutahara. Unsteady flow field numerical calculations of a ship’s rotating Weis-Fogh-type propulsion mechanism with the advanced vortex method. Journal of Mechanical Science and Technology, 26(2):437-446, 2012.

(12) Ki-Deok Ro, and Baoshan Zhu. Drag reduction from fences on a square prism near plane wall. Journal of Mechanical Science and Technology, 25(12):3063-3068, 2011.

(11) Hong WangBaoshan Zhu. Numerical Prediction of Impact Force in Cavitating Flows. ASME Journal of Fluids Engineering, 132(10), 101301-19,2010.

(10) Baoshan Zhu, Jun Lei, Shuliang Cao. Numerical simulation of vortex shedding and lock-in characteristics for a thin cambered blade. ASME Journal of Fluids Engineering, 129:1297-1305, 2007.

(9) Kideok Ro, Baoshan Zhu, Hokeun Kang. Numerical analysis of unsteady viscous flow through a Weis-Fogh-type ship propulsion mechanism using the advanced vortex method. ASME Journal of Fluids Engineering, 128:481-487, 2006.

(8) Baoshan Zhu. Finite volume solution on the Navier-Stokes equations in velocity-vorticity formulation. International Journal for Numerical Methods in Fluids, 48:607-629, 2005.

(7) Baoshan Zhu, Kyoji Kamemoto. Numerical simulation of unsteady interaction of centrifugal impeller with its diffuser using Lagrangian discrete vortex method. Acta Mech Sinica, 21:40-46, 2005.

(6) Baoshan Zhu, Kyoji Kamemoto. Probability of self-oscillation induced by vortex shedding from a thin cambered blade. Experimental Thermal and Fluid Science, 29:129-135,2004.

(5) Baoshan Zhu, Kyoji Kamemoto. A Lagrangian vortex method for flows over a moving bluff body. Computational Fluid Dynamics JOURNAL, 2003. vol.11 no.4, pp.363-369.

(4) Baoshan Zhu, Kyoji Kamemoto. Simulation of unsteady interaction of centrifugal impeller with its diffuser using advanced vortex method. JSME International Journal series B, 43(3), pp371-378, 2000.

(3) Baoshan Zhu, Kyoji Kamemoto, Hiroaki Matsumoto. Numerical simulation of the two-dimensional unsteady interaction of a centrifugal impeller with its volute casing by vortex method, JSME Journal series B, 65(630): 211-217, 1999.

(2) Baoshan Zhu, Kyoji Kamemoto and Hiroaki Matsumoto. Computation of unsteady viscous flow through centrifugal impeller rotating in volute casing by direct vortex method. Computational Fluid Dynamics JOURNAL, 7(3) :313-323,1998.

(1) Baoshan Zhu, Kyoji Kamemoto and Hiroaki Matsumoto. Direct simulation of unsteady flow through a centrifugal pump impeller using fast vortex method. Computational Fluid Dynamics JOURNAL, 7(1):15-25,1998.

(28) 谢星、王红彪、李振林、祝宝山、王宏. 带分流叶片离心式风机叶轮优化设计. 流体机械,第49卷第10期,21-28,2021年10月.

(27) 李剑华、张文武、祝宝山、李正贵、张飞. 水泵水轮机无叶区压力脉动研究. 工程热物理学报,第42卷第5期,1213-1223,2021年5月.

(26) 李鑫锐、祝宝山、李正贵、王维军. 叶片包角对双涡壳离心泵水力特性的影响. 热能动力工程,第36卷第3期,35-42,2021年3月.

(25) 张文武、祝宝山、余志毅. 流动参数对混流泵全流道内气液相间作用特性的影响. 工程热物理学报,第41卷第8期,1911-1916,2020年8月.

(24) 宫奎、祝宝山、胡赞熬、张飞. 可逆式水泵水轮机多目标优化设计及流动研究. 水电能源科学,第37卷第10期,108-112,2019年10月.

(23) 樊玉林、祝宝山、胡赞熬、张飞. 负倾角水泵水轮机水轮机工况压力脉动特性研究,水电能源科学,第37卷第10期,113-116,2019年10月.

(22) 张飞、樊玉林、祝宝山、徐用良、刘文杰. 模型可逆式水泵水轮机S区压力脉动测量. 流体机械,第47卷第6期,6-111,2019年6月.

(21) 张飞、祝宝山、钟大林、李东阔. 水轮机工况下的水泵水轮机静态稳定. 水力发电学报,第38卷第6期,92-100,2019年6月.

(20) 薛城、祝宝山、刘小兵、胡赞熬. 基于叶片载荷分布的离心泵正交优化设计. 工程热物理学报,第40卷第5期,1065-1071,2019年5月.

(19) 胡赞熬、王俊雄、祝宝山、刘小兵. 离心泵叶轮穿孔对空化性能影响. 热能动力工程,第32卷第10期,44-51,2018年10月.

(18) 张文武、余志毅、祝宝山、杨策.叶顶间隙对低比转速混流泵性能及内部流场影响的研究. 机械工程学报,第53卷第22期,182-189,2017年11月.

(17) 陈铁军、祝宝山、王正伟、罗先武、李辉. 水力机械综合试验台水力循环系统模块化设计. 实验技术与管理,第31卷第4期,89-93,2017年6月.

(16) 翟杰、祝宝山、李凯、王旭鹤、曹树良. 低比转数混流泵导叶内部压力脉动特性研究. 农业机械学报, 第47卷第6期, 42-46, 2016年6月.

(15) 翟杰、祝宝山、曹树良. 求解势流的正则化快速多极子边界元法. 清华大学学报(自然科学版), 第55卷第7期, 797-802, 2015年7月.

(14) 王旭鹤、祝宝山、樊红刚、谭 磊、陈元林、王焕茂. 水泵水轮机转轮三维反问题设计与特性研究. 农业机械学报,第45卷第12期,93-98,2014年12月.

(13) 王旭鹤、祝宝山、曹树良、谭 磊. 可逆式水泵水轮机转轮的三维反问题优化设计. 农业工程学报,第30卷第13期,78-85,2014年7月.

(12) 李凯、祝宝山、王宏. 高温气冷堆主氦风机叶轮过盈配合有限元分析. 核动力工程,第35卷第1期,142-146, 2014年2月.

(11) 周东岳、祝宝山、上官永红、曹树良. 基于流固耦合的混流式水轮机转轮应力特性分析,水力发电学报,第31卷第4期,216-220,2012年8月.

(10) 王龙步、祝宝山、王宏、曹树良. 水力机械非定常流动的三维涡方法计算, 力学学报, 第44卷第三期, 2012(5):520-527.

(9) 祝宝山、王旭鹤、龟本乔司、曹树良. 流体机械非定常流动的涡方法数值模拟,水力发电学报,第30卷第5期,178-185, 2011年10月. (EI:20114814563401 )

(8) 张鹏远、祝宝山、张乐福. 混流式水轮机转轮去叶道涡压力脉动数值研究. 大电机技术,2009年第6期,35-39.

(7) 陶海坤、祝宝山、曹树良、陆力. 钟型进水流道吸水室的后壁距研究. 流体机械, 第36卷第3期,15-18, 2008年.

(6) 金鑫、祝宝山、曹树良. 三角翼周围非定常流动的三维涡方法数值模拟. 清华大学学报(自然科学报), 第48卷第2期,256-259, 2008年.

(5) 祝宝山. 非定常流动的快速拉格朗日涡方法数值模拟. 力学学报, 第40卷第1期,9-18, 2008年.

(4) 陶海坤、祝宝山, 曹树良等. 钟型进水流道吸水室后壁的优化设计. 江苏大学学报,第28卷第3期,228-231, 2007年.

(3) 祝宝山, 雷俊,曹树良. 二维有涡流动的数值模拟方法. 清华大学学报(自然科学报), 第47卷第2期,219-223, 2007年.

(2) 康伟, 祝宝山, 曹树良. 离心泵螺旋型压水室内流场的大涡模拟. 农业机械学报, 第37卷第7期,62-65, 2006年.

(1) 祝宝山, 龟本乔司, 曹树良. 叶片表面旋涡脱落诱发自激振动的可能性. 机械工程学报, 第42卷第1期,35-39, 2006年.