教育背景
1994.09--1998.09 博士 美国加州大学戴维斯分校机械与航空工程系
1983.09--1989.12 学士、硕士 清华大学工程力学系流体力学专业
工作履历
2013.10-今 清华大学能源与动力工程系,教授、长聘教授
1999.12-2013.10 清华大学核能与新能源技术研究院,副教授、教授,副院长、副总工程师
1998.09-1999.12 美国耶鲁大学化学工程系,博士后
1989.12-1994.09 清华大学核能与新能源技术研究院,助理研究员
学术兼职
《PARTICUOLOGY》编委会,委员
《流体机械》编委会,副主任委员
《风机技术》编委会,委员
《中国粉体工程》编委会,委员
社会兼职
国际反应堆结构力学学会IASMiRT,终身顾问(前主席)
国际磁悬浮轴承学术委员会,理事
ISO/TC 108/SC 2/WG 7 国际标准化委员会磁悬浮轴承振动标准工作组,成员
中国颗粒学会,常务理事
中国机械工程学会流体工程分会,副理事长
全国磁悬浮与振动技术专业委员会,顾问
中国空间科学学会微重力科学与应用研究专业委员会,委员
全国专业标准化技术委员会(SAC/TC),委员
曾任
《核动力工程》编委会,委员
《International Journal of Nuclear Energy Science and Technology》编委会,委员
第16届国际磁悬浮轴承学术会议ISMB-16,主席
国际反应堆结构力学学会IASMiRT,理事、主席、副主席
第18届国际反应堆结构力学会议SMiRT-18,主席
全国磁悬浮轴承专业委员会,主任委员
全国反应堆结构力学专业委员会,副主任委员
北京市核学会,副理事长
中国动力工程学会核电专业委员会,理事
全国新堆与研究堆专业委员会,主任委员
第十五届国际核石墨专家会议(INGSM),主席
清华大学燃烧能源中心,常务副主任
研究领域
颗粒学:气溶胶动力学、颗粒吸湿增长机理研究、放射性气溶胶动力学、热泳与扩散泳、颗粒沉积、气溶胶变重力沉降机理等研究;燃烧颗粒物形成机理研究、微重力燃烧与颗粒动力学研究;
磁悬浮轴承:从事主动磁悬浮轴承和磁悬浮旋转机械研究和研发,提出了无差动电磁轴承控制方法,开发了电磁轴承抗冲击技术、控制系统冗余容错技术、和电磁轴承的复合支承技术,将主动控制磁悬浮轴承应用于旋转机械的减振降噪;
核反应堆工程:严重事故下气溶胶演化行为研究,核石墨氧化机理及石墨机械辐照性能研究、反应堆结构力学研究、高温气冷堆能量转换研究。
研究概况
在研科研项目(负责人)
国家重点研发计划项目(2024YFB3410000):高速高负载磁悬浮轴承关键技术( 共性关键技术类),项目负责人,2024.12~2027.11
研究内容:
研究高速磁轴承转子磁滞损耗机理、节能型多极独立高冗余磁悬浮轴承设计方法;突破高负载磁轴承流体脉动时变耦合高抗扰控制、高速磁轴承转子高频变频高效驱动、 磁轴承变偏置电流分配策略与低功耗鲁棒控制等关键技术; 研制高速高效磁悬浮轴承、 高负载磁悬浮轴承,分别在高速空压机、 透平真空泵等装备中应用验证。
已完成科研项目(负责人)
主持国家自然科学基金燃烧学项目“铬燃烧过程中的量子化学研究”、“含铬有害废物焚烧化学动力学模型的量子化学研究”和“含铬有害废物焚烧处理的动力学研究”等三项,国家自然科学基金重大研究计划项目“高温气冷堆与氦气轮机关键基础研究(西部能源利用及其环境保护的若干关键问题)”。
负责国家重点研发计划课题“严重事故下气溶胶迁移与热力学现象研究” 2020YFB1901401、子课题“磁悬浮轴承与支承部件的耦合作用机理及设计方法研究”2018YFB2000103和课题“重点行业排放检测与评估”2016YFC0202702;负责国家重大专项项目“用于主氦风机的电磁轴承技术研究”和“石墨粉尘在事故条件下的排放行为研究”;主要负责“十五”863计划后续能源领域重点项目“高温气冷堆氦气透平发电系统”和“10MW高温气冷实验堆改造及氦气透平发电系统役前试验研究”,完成“高温气冷堆氦气透平发电系统”研究;负责完成8个国际合作项目,涉及燃烧学、反应的结构和核级石墨研究;负责能源局、教育部和国防等科技项目近50余项,主要研究颗粒动力学、反应堆工程,磁悬浮轴承,振动与噪声控制等方面研究。
奖励与荣誉
2023年度:第48届日内瓦国际发明展发明金奖,项目为“磁悬浮轴承系统自适应载荷分配方法”,主办单位为瑞士联邦政府 世界知识产权组织(WIPO)。
2023年度:《原子能科学技术》突出贡献学者
2022年度:2022中国发明协会发明创业奖成果奖一等奖“磁悬浮轴承及其应用,2022-CAICG-1-J01”
2021年度:中国产学研合作促进会“中国产学研合作创新奖”
2020年度:中国颗粒学会自然科学奖二等奖(高温气冷堆石墨粉尘演化机理研究,2020-ZK-2-01-R02);
2015年度:国际核工程大会奖(ICONE AWARD);
2005年度:教育部“新世纪优秀人才支持计划”获得者;
2004年度:北京市优秀教师;
2003年度:清华大学“学术新人奖”(清华大学青年教师最高学术荣誉);
2000年度:教育部“优秀青年教师资助计划”获得者;
曾被评为清华大学优秀青年教师、清华大学先进工作者、清华大学第四届、六届、七届“良师益友”。
作为研究骨干参与的“200MW低温核供热堆压力壳在役检查方案研究”获国家科委颁发的国家科技成果奖。
作为研究骨干参与的“液压螺栓张拉机”的设计和成功研制获得国家“八五”科技攻关重大科技成果奖。
学术成果

“Advanced Theory and Application of Magnetic Actuators”(Suyuan YU, etc. MDPI AG,Basel, Switzerland, 2024 ISBN:978-3-7258-1753-5), “The New Technology in High Temperature Gas-cooled Reactor”(Suyuan YU, Daly City, USA: Visuals Press, 2009)等5部专著;
“磁轴承、控制方法及装置”(202210323081.3),“磁轴承的零偏置控制方法、装置及磁轴承”(202210323785.0)等近60项获权发明专利;
参加ISO 14839-5、6、7和多个国内相关标准的制定。
发表学术论文300余篇,其中SCI索引100余篇、EI索引180余篇。
主要期刊文章:
[1] Experimental and mechanistic study of dispersed micrometer-sized particle resuspension in a square straight duct with rough walls. Particuology, 2023, 83:101–114.
[2] 永磁悬浮技术的实现机理与发展现状, 机械工程学报, 2023, 59:1-19.
[3] 核反应堆中气溶胶颗粒再悬浮行为研究进展. 原子能科学技术, 2023, 57:2049-2066.
[4] Alternative linear dynamic analysis method for gas foil bearing rotor systems using bearing s-domain impedance. Mechanical Systems and Signal Processing. 2023, 205:110844.
[5] Time-scale Separation Control for a Class of Current Distribution Strategy in AMBs-rotor System with Bounded Bus Voltage. IEEE Transactions on Transportation Electrification, 2023, 9(3): 4147-4157.
[6] Division linearization zero-bias current control for AMBs-rotor system with uncertainties and saturation. IEEE Transactions on Industrial Electronics, 2023, 70(10): 10557-10566.
[7] Radial basis function method for predicting the evolution of aerosol size distributions for coagulation problems. Atmosphere. 2023, 13:.
[8] Characterization of heterogeneity in NBG-18 nuclear graphite microstructure by correlative analysis of optical texture and focused ion beam transmission electron microscopy observations. Carbon. 2022
[9] 波箔动压气体轴承建模中典型摩擦模型的对比分析. 轴承, 2022, 10: 25-32.
[10] Modeling and stability characteristics of bump-type gas foil bearing rotor systems considering stick–slip friction. International journal of mechanical sciences. 219(2022).
[11] 核反应堆严重事故中气溶胶的吸湿增长研究进展. 核动力工程, 2022, 43(2): 14.
[12] Effects of thermophoresis on Brownian coagulation of spherical particles over the entire particle size regime. Particuology. 2022, 67:8-17.
[13] Identification of system parameters and external forces in AMB-supported PMSM system. Mechanical Systems and Signal Processing. 2022, 166:108438.
[14] Nonlinear dynamic analysis of supercritical and subcritical Hopf bifurcations in gas foil bearing-rotor systems. Nonlinear Dynamics. 2021,103:2241–2256.
[15] The optical texture of PGA, Gilsocarbon, NBG-18, and IG-110 nuclear graphite. Journal of Nuclear Materials, 552(2021) .
[16] Strong base shock tests of a high-speed maglev motor – stability considerations and measurement results. International Journal of Structural Stability and Dynamics. 2021, 2150147.
[17] Shock-induced persistent contact and synchronous re-levitation control in rotor/magnetic bearing systems. Mechanical Systems and Signal Processing. 2020, 163:108174.
[18] Nonlinear dynamic simulation and parametric analysis of a rotor-AMB-TDB system experiencing strong base shock excitations. Mechanism and Machine Theory 2021, 155:104071.
[19] An analytical solution of the population balance equation for simultaneous Brownian and shear coagulation in the continuum regime. Advanced Powder Technology, 2020, 31(5):2128-2135.
[20] A new method for solving population balance equations using a radial basis function network. Aerosol Science and Technology, 2020,1-12.
[21] Vibration isolation optimized design of magnetic suspended pump. International Journal of Applied Electromagnetics and Mechanics, 2020, 63:81–103.
[22] Evaluation of thermophoretic effects on aerosol coagulation in HTGR conditions. Particuology, 2019.
[23] Measurements and analysis of adhesive forces for micron particles on common indoor surfaces. Indoor and Built Environment, 2019.
[24] The microstructure and texture of Gilsocarbon graphite. Carbon, 2019, 153:428-437.
[25] A novel moment method using the log skew normal distribution for particle coagulation. Journal of Aerosol Science, 2019, 134: 95-108.
[26] Extended log-normal method of moments for solving the population balance equation for Brownian coagulation. Aerosol Science & Technology, 2019, 53(3):332-343.
[27] A new approximation approach for analytically solving the population balance equation due to thermophoretic coagulation. Journal of Aerosol Science, 2019, 128: 125-137.
[28] Nuclear graphite wear properties and estimation of graphite dust production in HTR-10. Nuclear Engineering and Design, 2017, 315: 35-41.
[29] Resuspension of multilayer graphite dust particles in a high temperature gas-cooled reactor. Nuclear Engineering and Design, 2017, 322:497-503.
[30] Study on the resuspension of graphite dust based on the Rock'n'Roll model. Progress in Nuclear Energy, 2017, 98:313-320.
[31] Characterization of graphite dust produced by pneumatic lift. Nuclear Engineering and Design, 2016, 305:104-109.
[32] Thermophoretic and turbulent deposition of graphite dust in HTGR steam generators. Nuclear engineering and design, 2016, 300:610-619.
[33] Robin Jean-Charles. Analysis of graphite gasification by water vapor at different conversions. Nuclear Engineering and Design, 2014, 273: 68-74.
[34] Identification of active magnetic bearing system with a flexible rotor. Mechanical Systems and Signal Processing, 2014, 49(1): 302-316.
[35] The mechanical behavior and reliability prediction of the HTR graphite component at various temperature and neutron dose ranges. Nuclear Engineering and Design, 2014, 276:9-18.
[36] Calculation of collision frequency function for aerosol particles in free molecule regime in presence of force fields. Front. Energy 2013, 7(4): 506–510.
[37] Failure probability study of HTR graphite component using microstructure-based model. Nuclear Engineering and Design, 2012, 253: 192-199.
[38] Pore structure development in oxidized IG-110 nuclear graphite. Journal of Nuclear Materials, 2012, 430(1-3): 229-238.
[39] Technical design and principle test of active magnetic bearings for the turbine compressor of HTR-10GT. Nuclear Engineering and Design, 2012, 251: 38-46.
[40] 核级石墨失重率对其氧化速率的影响. 核动力工程, 2013,34(3): 46-49.
[41] 气体流速及温度对IG-110核级石墨氧化速率的影响. 清华大学学报(自然科学版), 2012, 52(4): 504-507+512.
[42] The various creep models for irradiation behavior of nuclear graphite. Nuclear Engineering and Design, 2012, 242: 19-25.
[43] Analysis of fuel element matrix graphite corrosion in HTR-PM for normal operating conditions. Nuclear Engineering and Design, 2010, 240(4): 738-743.
[44] 乙炔/空气预混火焰法合成多壁碳纳米管的实验研究. 工程热物理学报, 2009, 30(1):165-168.
[45] Lrge-scale numerical simulation of mechanical and thermal properties of nuclear graphite using a microstructure-based model. Nuclear Engineering and Design, 2008, 238 (12): 3203-3207.
[46] Uncertainties of creep model in stress analysis and life prediction of graphite component. Nuclear Engineering and Design, 2008, 238(9): 2256-2260.
[47] The modeling of graphite oxidation behavior for HTGR fuel coolant channels under normal operating conditions. Nuclear Engineering and Design, 2008, 238(9): 2230-2238.
[48] Deposition of Aerosol in a Laminar Pipe Flow. Science in China, 2008, 51(8):1242-1254.
[49] HTGR projects in China. Nuclear engineering and technology, 2007, 39 (2): 103-110.
[50] Theoretical analysis of mass transfer and reaction in a porous medium applied to the gasification of graphite by water vapor. Nuclear engineering and design, 2006, 236(9): 938-947.
[51] Comparison of oxidation behaviors of different grades of nuclear graphite. Nuclear science and Engineering, 2005, 151(1):121-127.
[52] Probability Assessment of Graphite Brick in the HTR-10. Nuclear Engineering and Design, 2004, 227(2): 133-142.
[53] Effect of temperature on graphite oxidation behaviour. Nuclear Engineering and Design, 2004, 227(3): 273-280.
[54] Deposition of Aerosol Particles in Laminar Flow over a Vertical Plate with Variable Temperatures. Proc. Combust. Inst., 29, 2003, 2415-2421.
[55] Future HTGR Developments in China after the Criticality of the HTR-10. Nuclear Engineering and Design, 2002, 218(1-3): 249-257.
[56] MC Simulation of Aerosol Aggregation and simultaneous Spheroidization. AICHE Journal, 2001, 47(3): 545-561.
[57] A Preliminary Kinetic Model of Chromium in a Hydrogen/Air Flame. Combustion Science and Technology, 160, 2000, 38-46.
[58] The Transformation of Chromium in a Laminar Premixed Hydrogen-Air Flame. Proc. Combust. Inst., 1998, 27, 1639-1645.
[59] A Two-Dimensional Discrete-Sectional Model for Aerosol Nucleation and Growth in a Flame. Aerosol Science and Technology, 1998, 28(3): 185-196.
[60] An Approximate Method to Calculate the Collision Rates of Discrete-Sectional Model. Aerosol Science and Technology, 1997, 27(2): 266-273.
重要学术会议大会邀请报告
[1] The development history of China's nuclear power and the structural features of Hualong 1, The Plenary Presentation for 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27), March 4-8 2024, Yokohama, Japan
[2] 磁悬浮轴承定向力鲁棒控制(特邀报告). 第十届全国磁悬浮技术学术会议, 2022年7月29日-8月1日,辽宁沈阳
[3] 磁悬浮轴承冲击碰摩动力学特性研究(特邀报告).第九届全国磁悬浮技术学术会议, 2021年7月20日-23日,四川成都.
[4] Multi-scale Study of Nuclear Graphite Oxidation with Oxygen: Reactive sites ratio derivation. The Plenary Presentation for 19th International Nuclear Graphite Specialists' Meeting (INGSM 19). Sep. 3rd-8th, 2018, Shanghai, China.
[5] Application of Magletic Leviation Technology in China, Invited Lecture and Proc. of The Third International Turbomachinery Conference. April 12th-15th, 2018, Chongqing, China.
[6] Advances in Structural Mechanics in Nuclear Energy Research. Keynote Presentation for 2011 International Conference on Computational & Experimental Engineering and Sciences (ICCES'11) , April 18-20, 2011, Nanjing, China
[7] Application and Research of the Active Magnetic Bearing in the Nuclear Power Plant of High Temperature Reactor, The plenary presentation for The 10th international Symposium on Magnetic Bearings (ISMB 10), Aug 21st- 23rd, 2006, Martigny, Switzerland