教育背景
1999.08 美国南加州大学,机械工程, 博士
1993.07 清华大学,热能工程,硕士
1993.07 清华大学,热能工程,硕士
工作履历
2010.12-至今 清华大学热能工程系教授
2005.12-2010.12 清华大学热能工程系副教授
2003.08-2004.12 清华大学热能工程系讲师
2000.10-2003.06 美国加州Quest软件公司等工程师
1999.08-2000.09 美国南加州大学机械工程系助理研究员
学术兼职
2008.10-至今,电力行业电站锅炉标准化技术委员会委员
2013.7-至今,中国动力工程学会锅炉专业委员会委员
2010.5-至今,国际能源组织(IEA)FBC执行委员会中国副代表
2018.7-至今,中国锅炉与锅炉水处理协会副理事长
研究领域
燃烧学、洁净煤技术、储能
研究概况
多年从事煤洁净燃烧技术和燃烧学基础研究,研究方向包括循环流化床锅炉、煤粉锅炉及燃烧器、燃烧污染物控制、化学动力学、火焰动力学、微重力燃烧和储能等。在煤粉锅炉与煤粉燃烧器、循环流化床燃烧等方面取得的一些成果应用于实践;提出了具有增强燃烧和降低NOx排放功能,进而提高煤粉锅炉的灵活性的煤粉(富氧)高温空气燃烧技术;是我国最早开展微重力煤燃烧的学者,参与多项微重力燃烧项目;近期提出并正在开发基于流化床加热的高温固体介质储热技术,获国际合作和科技部支持。先后承担各类科研项目40余项,参加科研项目50余项,其中负责国家自然基金项目5项、863项目1项,政府间国际合作科技部重点研发项目1项,获国家教育部科技进步一等奖3次,中国颗粒学会科技进步一等奖1次。发表学术论文400余篇,授权国家发明专利50余项。
正在开展的项目包括:
1. 基于流态化的高温热介质储热技术研发,科技部国家重点研发计划项目(政府间国际合作),2022-2025
2. 近极限层流燃烧特性与液体燃料燃烧研究(课题),科技部变革性技术关键科学问题,2021-2026
3. 大比例提高准东煤掺烧比例研究与应用,中国华电集团,2023-2025
4. 流化床储热,国际合作项目, 2025-2026
已完成科研项目
1. IGCC重型燃气轮机燃烧室煤制燃料气燃烧机理及验证”项目(课题),工信部两机重大专项基础研究,2020-2024
2. 微重力下煤颗粒燃烧及其碳烟生成特性研究,国家自然基金项目,2019-2022
3. 燃煤循环流化床锅炉烟气污染物超低排放的基础研究,国家自然基金联合重点项目,2018-2021
4. 煤粉群燃火焰中碳黑生成机理的研究,国家自然基金项目, 2015~2018
5. 燃用新疆高碱煤60-100万千瓦等级超(超)临界塔式锅炉关键技术开发及示范,科技部科技支撑,2015~2017
微重力下煤燃烧及其污染物生成特性研究,中国科学院科技专项,2013~2016
奖励与荣誉
教育部科技进步奖1等(2009),基于流态重构节能型循环流化床锅炉技术;
教育部科技进步奖1等(2005),循环流化床锅炉本体和动态仿真的关键技术研究和产业化
学术成果

1. Li, L., Zhang, R., Zhang, Y., & Zhang, H. Burning ammonia with methane blending in an air-staged porous media burner, Fuel, 2025.1, 387: 134385
2. Han, C., Hu, L., Zhang, R., Zhang, Y., Lyu, J., & Zhang, H. Experimental study on in-furnace denitriffcation with iron-based additives in a circulating ffuidized bed combustor, Fuel, 2025.2, 392
3. Han, C., Hu, L., Song, T., Zhang, Y., Lyu, J., Zhang, H., Liu, Q. & Ma, S. Effect of bed material size on gas-solid flow characteristics in a CFB at low solid recirculation rates, Fuel, 2023:333
4. Li, Z., Zhang, Y., & Zhang, H. Kinetics modeling of NO emission of oxygen-enriched and rich-lean-staged ammonia combustion under gas turbine conditions, Fuel, 2024, 355: 129509
5. Wang, T., Liu, X., Zhang, Y., & Zhang, H. Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery, Applied Energy, 2024, 358
6. Wang, T., Zhang, Y., Zhang, H., & Lyu, J. Stability and emissions of hydrogen-enriched methane flames on metal fiber surface burners, Intl. J. of Hydrogen Energy, 2024, 72:1308-1320.
7. Zhang, W., Ji, Y., Zhang, J., Zhang, H., Chang, C., & Wang, Z. Dual-course dielectric barrier discharge with a novel hollow micro-holes electrode to efficiently mitigate NOx, Journal of Hazardous Materials, 2024, 473
8. Zou, J., Liu, C., Liu, F., Zhang, Y., Zhang, H., & Lyu, J. Experimental study on the structure and propagation of the stretched hydrogen-rich turbulent premixed flames in the thin-reaction-zone regime, Fuel, 2024, 365
9. Huang, W., Wu, Y., Feng, L., & Zhang, H. Ignition characteristics of the high-velocity pulverized coal jet in MILD combustion mode: Experiments and prediction improvements, Fuel, 2024, 360.
10. Zhang, H., Lyu, J., & Yue, G. A review on research and development of CFB combustion technology in China, Powder Technology, 2023:414
11. Liu, X., Yang, H., Zhang, H., Lyu, J., & Zhang, Y. Semiempirical Model of the Drag Force Acting on an Obstacle in Downward Dense Particle Flows as per the Flow-Around Behavior, Industrial & Engineering Chemistry Research, 2023, 62(6) 3001-3010.
12. Han, C., Hu, L., Song, T., Zhang, Y., Lyu, J., Zhang, H., ... & Ma, S Effect of bed material size on gas-solid flow characteristics in a CFB at low solid recirculation rates, Fuel, 2023, 333(1):126354
13. Hu, L., Zhang, Y., Liu, Q., & Zhang, H. Density Functional Theory Study on the Reduction of NO by CO Over Fe3O4 (111) Surface, Combustion Science and Technology, 2022, 1- 14
14. Yang, W., Zhang, Y., Liu, B., Xu, K., & Zhang, H. Ignition predictions of isolated coal particles by different ignition criteria and devolatilization models,Fuel, 2022, 314
15. Yang, X., Wang, T., Zhang, Y., Zhang, H., Wu, Y., & Zhang, J. Hydrogen effect on flame extinction of hydrogen-enriched methane/air premixed flames: An assessment from the combustion safety point of view, Energy, 2022:239
16. Fang, N., Zhang, P., Wang, W., Wang, Q., Lyu, J., Zhang, H., & Yue, G. Effects of coal particle size on the two-phase flow and slagging performance in a swirl burner, Energy, 2022, 238
17. Yang, W., Zhang, Y., Liu, B., Zou, J., Zhang, H., & Lyu, J. Volatile Ejection in Jet Manner and its Influence on Combustion of Isolated Coal Particles, Microgravity Sci. Technol, 2022,34(5): 82
18. Yang, W., Liu, B., Zhang, H., Zhang, Y., Wu, Y., & Lyu, J. Prediction improvements of ignition characteristics of isolated coal particles with a one-dimensional transient model, Proceedings of the Combustion Institute, 2021,38(3): 34083-4089
19. Wang, T., Zhang, H., Zhang, Y., Wang, H., Lyu, J., & Yue, G. Efficiency and emissions of gas-fired industrial boiler fueled with hydrogen-enriched nature gas: A case study of 108 t/h steam boiler, International Journal of Hydrogen Energy, 2022,47(65): 28188-28203
20. Zhang, Y., Cheng, L., Zhang, Y., Fan, B., Zhang, H., & Lyu, J. A Method to Measure the Solid Circulation Rate in CFB Boilers,Environmental Science and Engineering. Springer, Singapore. 2022,pp499-511
21. Wang, K., Shen, W., Zhang, Y., Peng, Y., Zhang, H., Yang, H., & Lyu, J. Formation of SO3 in Flue Gas Under SNCR Conditions,Environmental Science and Engineering. Springer, Singapore. 2022, pp687-700.
22. Yang, W., Zhang, Y., Hu, L., Lyu, J., & Zhang, H. An experimental study on ignition of single coal particles at low oxygen concentrations, Frontiers in Energy, 2021, 15 (1): 38-45
23. Yang, X., Zhang, Y., Liu, D., Zhang, J., Zhang, H., Lyu, J., & Yue, G. Modeling of single coal particle combustion in O-2/N(2) and O-2/CO(2) atmospheres under fluidized bed condition, Frontiers in Energy, 2021, 15 (1):99-111
24. Shen, W., Zhang, Y., Yang, X., & Zhang, H. Hydrogen, Methane, Ethylene and Propylene Blending on the Ignition Delay Time of n-Heptane/Toluene Mixtures under Homogeneous and Nonpremixed Counterflowing Conditions, Combustion Science and Technology, 2021, 193(5/8): 812-834,
25. Shen, H., Wu, Y., Zhou, M., Zhang, H., Yue, G., & Lyu, J. Large eddy simulation of a 660 MW utility boiler under variable load conditions, Frontiers in Energy, 2021, 15 (1):124-131
26. Chen, S., Cai, R., Zhang, Y., Yang, H., Zhang, H., & Lyu, J. A semi-empirical model to estimate the apparent viscosity of dense, bubbling gas-solid suspension, Powder Technology, 2021, 377:289-296
27. Yang, X., Wu, Y., Zhang, Y., Zhang, H., & Zhang, J. Reassessing the 2-D velocity boundary effect on the determination of extinction stretch rate and laminar flame speed using the counterflow flame configuration, Combustion and Flame, 2021: 234
28. Hu, L., Zhang, Y., Zhang, H., & Wu, Y. Catalytic reduction of NO by CO over Fe-doped penta-graphene as a promising catalyst: A density functional study, Molecular Catalysis, 2020, 496
29. Feng, L., Wu, Y., Xu, K., Zhang, H., & Zhang, Y. Effect of particle distance on combustion behaviors through 1-D model with Neumann boundary condition, Fuel, 2020, 276
30. Feng, L., Zhang, H., Hu, L., Zhang, Y., Wu, Y., Wang, Y., & Yang, H. Classification performance of model coal mill classifiers with swirling and non-swirling inlets, Chinese Journal of Chemical Engineering, 2020, 28(3): 777-784
31. Wang, T., Zhang, H., Yang, H., & Lyu, J. Oxidation mechanism of pyrite concentrates (PCs) under typical circulating fluidized bed (CFB) roasting conditions and design principles of PCs’ CFB roaster, Chemical Engineering and Processing - Process Intensification, 2020, 153: 107944.
32. Shen, H., Zhang, Y., Wu, Y., Zhou, M., Zhang, H., & Yue, G. Modeling of the Coal Particle Behavior in an Ultra-Supercritical Boiler With Large Eddy Simulation,J. Energy Resour. Technol. Jul 2020, 142(7): 070909
33. Xu, K., Zhang, H., Shen, W., Zhang, Y., Wu, Y., & Lyu, J. Soot Formation and Distribution in Coal Jet Flames over a Broad Range of Coal Concentration, Energy & Fuel, 2020 34 (6):7545-7553
34. Wang, W., Lyu, J., Zhang, H., Liu, Q., Yue, G., & Ni, W. A decoupled method to identify affecting mechanism of crosswind on performance of a natural draft dry cooling tower, Frontiers in Energy, 2020, 14 (2):318-327
35. Wang, J., Huang, W., Zhang, Y., Wu, Y., Zhang, H., & Yue, G. Particle trajectories in pipe flow considering particle-wall collisions, Physics of Fluids, 2020, 32 (4): 043307
发明专利
1]吴玉新,蒋方舟,张天宇,刘琦,张海,吕俊复,刘青.热流密度测试装置[P].北京市:CN112903745B,2025-02-11.
[2]冯乐乐,吴玉新,黄文仕,张海,吕俊复.一种富氧煤粉燃烧器及其基于抽吸引射的燃烧方法[P].北京市:CN110594728B,2024-12-27.
[3]李昭兴,张海,张扬.一种氨富氧分级燃烧室及燃烧方法[P].北京市:CN116221781B,2024-11-26.
[4]张扬,张杨鑫,张海,吕俊复.点阵式多线程高温实验系统[P].北京市:CN114878442B,2024-11-08.
[5]刘琦,吕俊复,吴玉新,张扬,张缦,周托,张海.电热协同利用的蒸汽产生注汽系统[P].北京市:CN113237047B,2024-08-06.
[6]张扬,李潇峰,张海,吴玉新,张缦,吕俊复.一种氢氧化铝焙烧系统及其低氮焙烧方法[P].北京市:CN111233018B,2024-07-26.
[7]申浩树,吴玉新,吕俊复,张海,张缦.一种高压燃烧注汽锅炉[P].北京市:CN108561873B,2024-07-02.
[8]吴玉新,刘琦,吕俊复,张海,刘青,黄中,杨海瑞.耦合电锅炉产生蒸汽及热水的油田注汽锅炉系统[P].北京市:CN113091035B,2024-07-02.
[9]邹俊,张扬,张海,吴玉新,吕俊复,张缦.一种燃气燃烧器及其低氮燃烧方法[P].北京市:CN110887040B,2024-06-21.
[10]胡丽琳,张海,张扬,刘青,吕俊复.一种固介储热系统和热电厂换热系统[P].北京市:CN108692309B,2024-06-18.
[11]汤薛玉,柯希玮,马宇宸,张扬,周托,黄中,张海,吕俊复.气体制备系统和二氧化碳驱油系统[P].北京市:CN116104457B,2024-06-14.
[12]吕俊复,张扬,张缦,张海,杨海瑞,岳光溪.一种水煤浆及其全快速床流化状态的循环流化床燃烧装置[P].北京市:CN108561880B,2024-04-23.
[13]吕俊复,柯希玮,蔡润夏,张建春,杨海瑞,张缦,吴玉新,张海,刘青.吸附脱硝循环流化床锅炉及其运行方法[P].山西省:CN107238093B,2023-12-01.
[14]吕俊复,王卫良,姜士宏,吴玉新,张扬,张缦,张海,杨海瑞,刘青,李博,李文凯.一种二次再热发电系统及其运行方法[P].北京市:CN108592008B,2023-05-02.
[15]张建胜,张海,吕俊复,岳光溪.含碳飞灰高温熔融处理系统[P].北京市:CN113926829B,2023-03-28.
[16]张海,韩诚良,张扬,李振山,胡丽琳,杨万涛,刘青,吕俊复.热态循环流化床固体循环流率的测量方法以及测量系统[P].北京市:CN113155217B,2023-03-24.
[17]吴玉新,刘贵军,张归华,张海,吴家豪.电加热稳燃装置、方法及存储介质[P].北京市:CN114811650B,2023-02-07.
[18]张海,吕俊复,张扬,刘青,吴玉新.火电厂机组[P].北京市:CN114543065B,2023-01-10.
[19]李丹,张扬,张海,刘青.预混燃烧器[P].北京市:CN114719254B,2022-12-30.
[20]张扬,张海,邹俊,吕俊复,刘青,岳光溪.一种直棒式预混燃烧器及低氮燃烧方法[P].北京市:CN114659105B,2022-12-30.
[21]张贤,葛荣存,蔡润夏,张缦,杨海瑞,吕俊复,吴玉新,张海.一种循环流化床锅炉的片状阶梯型布风装置[P].北京市:CN107036085B,2022-12-23.
[22]周托,王志宁,蔡晋,黄德洪,张扬,张海.高炉冲渣水余热有机工质朗肯循环发电系统[P].山西省:CN112710157B,2022-11-25.
[23]周托,张杨鑫,王志宁,黄德洪,张扬,张海.流化小球储热的高炉冲渣水余热发电系统[P].山西省:CN112746140B,2022-08-19.
[24]张扬,王志宁,张杨鑫,张海,吕俊复,刘青,弋治军.燃烧管和具有该燃烧管的低氮燃烧器[P].北京市:CN112696672B,2022-04-15.
[25]柯希玮,蔡润夏,张海,杨海瑞,张缦,刘青,张贤,吕俊复.一种减少烟气中NOx含量的催化剂金属受热面及其制备方法[P].北京市:CN107398283B,2021-02-26.
[26]吴玉新,王景玉,吕俊复,张海,杨海瑞.基于运行数据的锅炉高温受热面金属壁温监测方法[P].北京市:CN110987211B,2020-12-08.
[27]史航,吴玉新,吕俊复,张海,杨海瑞.一种受热面积灰结渣监测方法[P].北京市:CN110455854B,2020-11-24.
[28]张海,胡丽琳,张扬,刘青,吴玉新,张缦,吕俊复.一种电加热固介储能装置[P].北京市:CN110360863B,2020-10-09.
[29]张扬,张海,吴玉新,杨燕梅,张缦,刘青,吕俊复,郭琴琴.一种燃用高碱煤的锅炉系统及方法[P].北京市:CN109210557B,2020-05-22.
[30]张扬,张海,张缦,刘青,杨海瑞,吕俊复,岳光溪.循环流化床燃烧方法[P].北京市:CN109253448B,2020-05-22.
[31]柯希玮,蔡润夏,吕俊复,岳光溪,张缦,杨海瑞,张海,吴玉新,刘青.一种实现循环流化床锅炉NOx超低排放的方法[P].北京市:CN108105759B,2020-05-15.
[32]蔡润夏,张缦,吕俊复,杨海瑞,刘青,张海,吴玉新,张扬.一种循环流化床锅炉炉内脱硫方法[P].北京市:CN107596878B,2020-04-17.
[33]张扬,张海,吕俊复,吴玉新,张缦,杨海瑞,刘青,张建胜,岳光溪.一种气体燃料的低氮燃烧器[P].北京市:CN109442411B,2020-02-21.