丁艳军教授、博士生导师

办公电话:010-62773738

电子邮箱:dyj@tsinghua.edu.cn

通讯地址:清华大学能源与动力工程系

邮编:100084

教育背景

1991年9月–1995年7月 东南大学 动力工程系 学士

1995年9月–2000年3月 东南大学 动力工程系 博士

工作履历

2000年5月–2002年7月 清华大学热能工程系 博士后

2002年7月–2005年10月 清华大学热能工程系 助研

2005年11月–2014年10月 清华大学热能工程系 副研究员

2014年11月–2016年7月 清华大学热能工程系 研究员

2016年8月-现在 清华大学能源与动力工程系 教授

学术兼职

2008.8—现在 中国动力工程学会自动化专委会 委员

2013.8—现在 中国电机工程学会自动化专委会 委员

研究领域

光谱测量与诊断、热工过程优化与控制。

研究概况

主要科研项目:

1) #4锅炉气氛场测量和腐蚀控制项目,安徽华电六安电厂有限公司,2026-02-01

2) 石化企业智慧电力与蒸汽协同优化研究,中国石油化工股份有限公司,2021.08-2024.08

3) 北京固定污染源烟气脱硝系统氨排放监测及控制措施分析项目,北京市生态环境局,2021.07-2021.12

4) 低浓度颗粒物及高精度烟气组分连续监测技术及应用研究项目,三河发电有限责任公司,2021.06-2022.12

5) 工业烟气氨排放高精度在线监测技术研发及示范(课题),国家重点研发计划,2016.07-2020.06

6) 重点行业固态污染源大气排放高精度在线监测技术研发及应用示范(项目),国家重点研发计划,2016.07-2020.06

7) 多污染物协同控制关键技术开发,大唐环境产业集团股份有限公司,2015.11-2017.06

8) 基于TDLAS技术的氨逃逸率监测仪表研发,浙能集团,2013.03-2013.12

9) TDLAS技术中分子吸线型函数在线测量方法研究,自然科学基金面上项目,2012.01–2015.12

10) 褐煤提质烟气余热发电关键技术研究开发,中电投蒙东能源集团有限责任公司,2012.11-2014.12

11) TDLAS温度测量系统研制,航天科技集团,2012.06–2012.12

12) 大规模褐煤脱水关键技术研究及工程示范(子课题),国家科技支撑计划项目,2012.01–2015.12

13) 炼油行业节能降耗集成控制与优化技术及应用(子课题),国家863计划项目,2007.10–2010.06

14) 电厂循环水余热资源利用技术及装备研究与示范,国家科技支撑计划项目,2007.09-2010.09

学术成果


1、主要期刊论文:

1)Investigation of the NH3 Consumption and H2O/NO Formation During the Oxidation of N-Heptane and Iso-Octane Blended with Ammonia,Fuel,2024, 357:129793.

2)Quantitative 2D Reconstruction of Temperature and OH Concentration in Axisymmetric Flames Based on Ultraviolet Broadband Absorption Tomography,Combustion and Flame,2024, 261: 113270.

3)High-temperature Line Strength and Line Shape Parameters Measurements of Ar- and N2-perturbed CO2 Lines Near 4.18 um in a Shock Tube,Journal of Molecular Spectroscopy,2024, 400: 111890.

4)A High-Precision NOX Chemiluminescence Sensor of Sub-Ppb-level Based on Air-Fed Ozoniser and Flow-Restricting Capillary, International Journal of Environmental Analytical Chemistry, 2024:1-16.

5)Mid-infrared Absorption Spectroscopy Measurements and Model Improvements During the Oxidation of Ammonia/ethanol and Ammonia/diethyl Ether Blends in a Shock Tube, Fuel ,2024, 357: 129635.

6)High Precision Measurement of Spectroscopic Parameters of CO at 2.3 Μm Based on Wavelength Modulation-Direct Absorption Spectroscopy,Spectroscopy And Spectral Analysis,2023, 43: 2246-2251.

7)The Design of a Reference Model-Based Proportional-Integral-Derivative Controller with the Generalized Derivative, 2023 23rd International Conference on Control, Automation and Systems (ICCAS), 2023 :547-552.

8)基于TDLAS和恒流稀释取样的磨煤机出口痕量CO体积分数在线监测技术研究, 热力发电, 2023, 52(5).

9)Spatially Resolved Broadband Absorption Spectroscopy Measurements of Temperature and Multiple Species (NH, OH, NO, and NH3) in Atmospheric-Pressure Premixed Ammonia/methane/air Flames, Fuel, 2023, 332: 126073.

10)Experimental Study of the Methane/hydrogen/ammonia and Ethylene/ammonia Oxidation: Multi-parameter Measurements Using a Shock Tube Combined with Laser Absorption Spectroscopy, Combustion and Flame, 2023, 254: 112830.

11)Nitromethane As a Nitric Oxide Precursor for Studying High-Temperature Interactions Between Ammonia and Nitric Oxide in a Shock Tube, Combustion And Flame ,2023, 250: 112644.

12)Shock Tube Study of the Interaction Between Ammonia and Nitric Oxide at High Temperatures Using Laser Absorption Spectroscopy, Proceedings of The Combustion Institute,2023, 4: 4365-4375.

13)High Precision Measurement of Spectroscopic Parameters of H2S in 6320—6350 Cm–1 Band, Acta Physica Sinica, 2023, 72: 024205.

14)反射激波后状态分析及对燃料反应进程的影响, 燃烧科学与技术, 2022, 28: 111-118.

15)基于概率鲁棒的改进自抗扰控制器设计, 综合智慧能源, 2022, 44: 57-64.

16)Simultaneous Measurements of Temperature, CO, and CO2 Time-History in Reacting N-Heptane/o2/argon Mixtures Blended with Diethyl Ether B Ehind Reflected Shock Waves, Combustion and Flame, 2022, 241: 112057.

17)Experimental Study of Nonlinear Phenomenon of NO Ultraviolet Broadband Absorption Spectroscopy, Acta Physica Sinica, 2022, 71: 203302-203302.

18)正戊烷氧化过程中温度和CO浓度吸收光谱测量,工程热物理学报, 2022, 43: 2033-2042.

19)Synchronic Measurements of Temperatures and Concentrations of OH, NH, and NO in Flames Based on Broadband Ultraviolet Absorption Spectroscopy, Acta Physica Sinica, 2022, 71: 173301.

20)Laser-absorption-spectroscopy-based temperature and NH3-concentration time-history measurements during the oxidation processes of the shock-heated reacting NH3/H2 mixtures, Combustion and Flame, 2022, 245: 112349

21)Research on the Desired Dynamic Selection of a Reference Model-Based PID Controller: A Case Study on a High-Pressure Heater in a 600 MW Power Plant ,Processes, 2022, 10: 1059.

22)A Controller Design Method for High-Order Unstable Linear Time-Invariant Systems, ISA Transactions, 2022, 130: 500-515.

23)Simultaneous Measurements of SO2 and SO3 in the Heterogeneous Conversions of SO2 Using QCL Absorption Spectroscopy, Applied Physics B, 2022, 128: 61.

24)乙醇燃烧着火延迟时间和CO2演化过程测量, 工程热物理学报 , 2022, 43: 535-542.

25)Measurement of NOx Concentration at Ppb Level in High-Purity Gases Based on Chemiluminescence, Method Acta Physica Sinica, 2022, 71: 137802-137802.

26)Simultaneous Temperature and CO-concentration Time-History Measurements During the Pyrolysis and Ultra-Fuel-rich Oxidation of Ethanol, Diethyl Ether, N-Heptane, and Isooctane Behind Reflected Shock Waves, Combustion and Flame, 2021, 232: 111537-111537.

27)Quantum Cascade Laser Measurements of CH4 Linestrength and Temperature-Dependent Self-Broadening and Narrowing Parameters at 7.16 um, Journal Of Quantitative Spectroscopy & Radiative Transfer, 2021, 276:107901.

28)Experimental and Simulated Study of Line-Shape Models for Measuring Spectroscopic Parameters Using the WM-DAS Method — Part II: Broadening and Narrowing of Select Near-Infrared H2O and CO Lines Perturbed by Ar, N2 and He

Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 272: 107790-107790.

29)Ignition-delay-time/time-resolved CO2-concentration Measurements During the Combustion of iC4h10/h2 Mixtures, Fuel, 2020, 284: 118980.

30)Experimental and Simulated Study of Line-Shape Models for Measuring Spectroscopic Parameters Using the WM-DAS Method - Part I: Collisional Broadening and Absorption Coefficients of H2O-Ar System, Journal of Quantitative Spectroscopy & Radiative Transfer, 2020, 254:107216.

2、国家发明专利:

1)基于电磁加热解析及原位预处理的烟气总氨在线监测装置,202210858230.6.

2)量程可调的原位取样分析装置, 202210435970.9.

3)一种锅炉尾部烟道截面氧气和CO同步监测装置及方法,202210412551.3.

4)一种空预器截面漏风率在线监测系统及方法,ZL 202210415118.5.

5)光纤测温探头固定及传热装置,202110668428.3 .

6)基于气体绕流的原位对穿渗透管式预处理装置,ZL 202110626076.5.

7)一种同步制取和定量测量SO3的系统及其方法,ZL 202110621105.9.

8)一种煤粉锅炉炉膛及其气体在线监测预警系统,ZL 202110021047.6.

9)一种免标定的气体浓度测量装置及方法,ZL 201911328202.8.

10)一种波长调制光谱技术中激光相对波长的测量方法,ZL 201911285286.1.

11)一种烟气中CO浓度混合取样式在线监测装置及方法,ZL 201911022333.3.

12)一种基于偶次谐波的吸收率函数复现方法,ZL 201910640997.X.

13)一种基于腔衰荡技术的气体吸收系数的测量方法,ZL 201910059718.0.

14)一种基于快速傅里叶变换的气体吸收率在线测量方法,ZL 201910036652.3.

15)一种实时在线监测烟气中SO3气体浓度的装置及方法,ZL 201711115028.X.

16)基于波长调制光谱技术的脱硝氨逃逸率测量装置及方法,ZL 201410478846.6.

17)一种基于调制系数的气体吸收率在线测量方法,ZL 201410119594.8.

18)一种叶轮旋转式煤干燥提质装置,ZL 201310342010.9.

19)一种塔式煤干燥提质装置,ZL 201310141618.5.

20)一种基于半高宽积分法的气体浓度在线测量方法,ZL 201210184277.5.