教育背景
9/2001-6/2006 厦门大学化学系,博士
9/1997-7/2001 厦门大学化学系,学士
工作履历
7/2015- 清华大学燃烧能源中心,热能工程系,副教授
7/2013-5/2015 美国明尼苏达大学化学系,Research Associate
7/2010-6/2013 美国明尼苏达大学化学系,博士后
5/2008-5/2010 以色列耶路撒冷希伯莱大学,博士后
2/2008-5/2008 香港浸会大学,研究助理
7/2006-4/2008 厦门大学化学系,讲师
9/2004-2/2005 香港城市大学,研究助理
研究领域
光化学,化学反应动力学(燃烧化学,大气化学),催化反应,材料等领域的理论计算研究
学术成果

1. Meana-Paneda,R.#; Xu, X. #; Ma,H. #; Truhlar, D. G.* J. Phys. Chem. A. 2017, 121, 1693.
DOI:http://dx.doi.org/10.1021/acs.jpca.6b10600
Computational kinetics by variational transition-state theory with semiclassical multidimentional tunneling: direct dynamics rate constants for the abstraction of H from CH3OH by triplet oxygen atoms
2. Bao, J. L.; Zhang, X.*; Xu, X.; Truhlar, D. G.* Phys. Chem. Chem. Phys. 2017, 19, 5839.
DOI:http://dx.doi.org/10.1039/c6cp08896a
Predicting Bond Dissociation Energy and Bond Length for Bimetallic Diatomic Molecules: A Challenge for Electronic Structure Theory
3. Li, X.; Xu, X.*; You, X.*; Truhlar, D. G.* J. Phys. Chem. A. 2016, 120, 4025.
DOI:http://dx.doi.org/10.1021/acs.jpca.6b02600
Benchmark calculations for bond dissociation enthalpies of unsaturated methyl esters and the bond dissociation enthalpies of methyl linolenate
4. Li, S. L.; Xu, X.; Hoyer, C. E.; Truhlar, D. G.* J. Phys. Chem. Lett. 2015, 6, 3352.
DOI:http://dx.doi.org/110.1021/acs.jpclett.5b01609
Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole
5. Xu, X.; Zheng, J.; Truhlar, D. G.* J. Am. Chem. Soc. 2015, 137, 8026.
DOI:http://dx.doi.org/10.1021/jacs.5b04845
Selected as JACS Spotlight: J. Am. Chem. Soc. 2015, 137, 8311.
DOI:http://dx.doi.org/10.1021/jacs.5b06634
Ultraviolet Absorption Spectrum of Malonaldehyde in Water Is Dominated by Solvent-Stabilized Conformations
6. Li, S. L.; Xu, X.; Truhlar, D. G.* Phys. Chem. Chem. Phys. 2015, 17, 20093.
DOI:http://dx.doi.org/10.1039/C5CP02461G
Computational Simulation and Interpretation of the Low-Lying Excited Electronic States and Electronic Spectrum of Thioanisole
7. Xu, X.; Zhang, W.; Tang, M.; Truhlar, D. G.* J. Chem. Theory Comput. 2015, 11, 2036.
DOI:http://dx.doi.org/10.1021/acs.jctc.5b00081
Do Practical Standard Coupled Cluster Calculations Agree Better than Kohn-Sham Calculations with Currently Available Functionals When Compared to the Best Available Experimental Data for Dissociation Energies of Bonds to 3d Transition metals?
8. Bao, J.; Yu, H. S.; Duanmu K.; Makeev, M.; Xu, X.; Truhlar, D. G.* ACS. Catal. 2015, 5, 2070.
DOI:http://dx.doi.org/10.1021/cs501675t
Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals
9. Xu, X.; Zheng, J.; Yang, K. R.; Truhlar, D. G.* J. Am. Chem. Soc. 2014, 136, 16378.
DOI:http://dx.doi.org/10.1021/ja509016a
Photodissociation Dynamics of Phenol: Multistate Trajectory Simulations including Tunneling
10. Hoyer, C.; Xu, X.; Ma, D.; Gagliardi, L.; Truhlar, D. G.* J. Chem. Phys. 2014, 141, 114104.
DOI:http://dx.doi.org/10.1063/1.4894472
Diabatization Based on the Dipole and Quadrupole: The DQ Method
11. Yang, K. R.; Xu, X.; Zheng, J.; Truhlar, D. G.* Chem. Sci. 2014, 5, 4661.
DOI:http://dx.doi.org/10.1039/C4SC01967A
Full-Dimensional Potentials and State Couplings and Multidimensional Tunneling Calculations for the Photodissociation of Phenol
12. Wang, B.; Yang, K. R.; Xu, X.; Isegawa, M.; Leverentz, H. R.; and Truhlar, D. G.* Acc. Chem. Res. 2014, 47, 2731.
DOI:http://dx.doi.org/10.1021/ar500068a
Quantum Mechanical Fragment Methods Based on Partitioning Atoms or Partitioning Coordinates
13. Xu, X.; Yang, K. R.; and Truhlar, D. G.*, J. Chem. Theory Comput. 2014, 10, 2070.
DOI:http://dx.doi.org/10.1021/ct500128s
Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms
14. Yang, K. R.; Xu, X.; and Truhlar, D. G.*, J. Chem. Theory Comput. 2014, 10, 924.
DOI:http://dx.doi.org/10.1021/ct401074s
Anchor Points Reactive Potential for Bond-Breaking Reactions
15. Zheng, J.; Xu, X.; Meana-Pa?eda, Rubén.; Truhlar, D. G.*, Chem. Sci. 2014, 5, 2091.
DOI:http://dx.doi.org/10.1039/C3SC53290A
Army Ants Tunneling for Classical Simulations
16. Li, S. H.; Marenich, A. V.; Xu, X.; and Truhlar, D. G.*, J. Phys. Chem. Lett. 2014, 5, 322.
DOI:http://dx.doi.org/10.1021/jz402549p
Configuration Interaction-Corrected Tamm-Dancoff Approximation: A Time-Dependent Density Functional Method with the Correct Dimensionality of Conical Intersections.
17. Luo, S.; Averkiev, B.; Yang, K. R.; Xu, X.; and Truhlar, D. G.*, J. Chem. Theory Comput. 2014, 10, 102.
DOI:http://dx.doi.org/10.1021/ct400712k
Density Functional Theory of Open-Shell Systems and Spin Transitions: The Fourth-Period Transition Metal Atoms and Their Cations.
18. Xu, X.; Yang, K. R.; Truhlar, D. G.* J. Chem. Theory Comput. 2013, 9, 3612.
DOI:http://dx.doi.org/10.1021/ct400447f
Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol
19. Verma, P.; Xu, X.; Truhlar, D. G.* J. Phys. Chem. C 2013, 117, 12648.
DOI:http://dx.doi.org/10.1021/jp402884h
Adsorption on Fe-MOF-74 for C1-C3 Hydrocarbon Separation
20. Yang, K. R.; Xu, X.; Truhlar, D. G.* Chem. Phys. Lett. 2013, 573, 84.
DOI:http://dx.doi.org/10.1016/j.cplett.2013.04.036
Direct Diabatization of Electronic States by the Fourfold-Way: Including Dynamical Correlation by Multi-Configuration Quasidegenerate Perturbation Theory with Complete Active Space Self-Consistent-Field Diabatic Molecular Oribitals
21. Xu, X.; Gozem, S.; Olivucci, M.; Truhlar, D. G.* J. Phys. Chem. Lett. 2013, 4, 253.
DOI:http://dx.doi.org/10.1021/jz301935x
Combined Self-Consistent-Field and Spin-Flip Tamm-Dancoff Density Functional Approach to Potential Energy Surfaces for Photochemistry
22. Xu, X.; Yu, T.; Papajak, E.; and Truhlar, D. G.*, J. Phys. Chem. A 2012, 116, 10480.
DOI:http://dx.doi.org/10.1021/jp307504p
Multi-Structural Variational Transition State Theory: Kinetics of the Hydrogen Abstraction from Carbon-2 of 2-Methyl-1-propanol by Hydroperoxyl Radical Including All Structures and Torsional Anharmonicity
23. Xu, X.; Papajak, E.; Zheng, J.; and Truhlar, D. G.*, Phys. Chem. Chem. Phys. 2012, 14, 4204.
DOI:http://dx.doi.org/10.1039/c2cp23692c
Multi-Structural Variational Transition State Theory: Kinetics of the 1,5-Hydrogen shift Isomerization of 1-Butoxyl Radical Including All Structures and Torsional Anharmonicity
24. Xu, X.; Truhlar, D. G.*, J. Chem. Theory Comput. 2012, 8, 80.
DOI:http://dx.doi.org/10.1021/ct200558j
Performance of Effective Core Potentials for Density functional Calculations on 3d Transition Metals
25. Papajak, E.; Seal, P.; Xu, X.; and Truhlar, D. G.*, J. Chem. Phys. 2012, 137, 104314.
DOI:http://dx.doi.org/10.1063/1.4742968
Thermochemistry of Radicals formed by Hydrogen Abstraction from 1-Butanol, 2-Methyl-1-Propanol, and Butanal
26. Xu, X.; Truhlar, D. G.*, J. Chem. Theory Comput. 2011, 7, 2766.
DOI:http://dx.doi.org/10.1021/ct200234r
Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds
27. Papajak, E.; Zheng, J.; Xu, X.; Leverentz, H. R. and Truhlar, D. G.* J. Chem. Theory Comput. 2011, 7, 3027.
DOI:http://dx.doi.org/10.1021/ct200106a
Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions
28. Xu, X.; Alecu, I. M. and Truhlar, D. G.* J. Chem. Theory Comput. 2011, 7, 1667.
DOI:http://dx.doi.org/10.1021/ct2001057
How Well Can Modern Density Functionals Predict Internuclear Distances at Transition States?
29. Zheng, J.; Xu, X.; Truhlar D. G.* Theor. Chem. Acc. 2011, 128, 295.
DOI:http://dx.doi.org/10.1007/s00214-010-0846-z
Minimally augmented Karlsruhe Basis Sets
30. Li, Y. J.; Deng, Z. Y.; Xu, X.; Wu, H. B.; Cao, Z. X.; Wang, Q. M.* Chem. Commun. 2011, 47, 9179.
DOI:http://dx.doi.org/10.1039/c1cc12857d
Methanol Triggered Ligand Flip Isomerization in a Binuclear Copper (I) Complex and the Luminescence Response
31. Xu, X.; Zilberg, S.; Haas, Y.* J. Phys. Chem. A. 2010, 114, 4924.
DOI:http://dx.doi.org/10.1021/jp911250g
Electrophilic Aromatic Substitution: the Role of Electronically Excited States.
32. Al-Jabour, S.; Baer, M.; Deeb, O.; Leibscher, M.; Manz, J.; Xu, X.; Zilberg, S.; J. Phys. Chem. A. 2010, 114, 2991.
DOI:http://dx.doi.org/10.1021/jp905038t
Molecular Symmetry Properties of Conical Intersections and Non-Adiabatic Coupling Terms: Theory and Quantum Chemical Demonstration for Cyclopenta-2,4-Dienimine C5H4NH
33. Xu, X.; Kahan, A.; Zilberg, S.; Haas, Y.*; J. Phys. Chem. A. 2009, 113, 9779.
DOI:http://dx.doi.org/10.1021/jp904097k
Photo-Reactivity of a Push-Pull Merocyanine in Static Electric Fields: a Three State Model of Isomerization Reactions Involving Conical Intersections
34. Chen, M. L.; Xu, X.; Cao, Z. X.; Wang, Q. M.*; Inorg. Chem. 2008, 47, 1877.
DOI:http://dx.doi.org/10.1021/ic702023e
Ligand- and Anion-Controlled Formation of Silver Alkynyl Oligomers from Soluble Precursors
35. Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Phys. Chem. A. 2007, 111, 5775.
DOI:http://dx.doi.org/10.1021/jp071975+
What Definitively Controls the Photochemical Activity of Methylbenzonitriles and Methylanisoles? Insights from Theory
36. Chen, X.; Xu, X.; Cao, Z. X.*; J. Phys. Chem. A. 2007, 111, 9255.
DOI:http://dx.doi.org/10.1021/jp0727502
Theoretical Study on the Singlet Excited State of Pterin and Its Deactivation Pathway
37. Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Phys. Chem. A. 2006, 110: 1740.
DOI:http://dx.doi.org/10.1021/jp055695a
Computational Characterization of Low-Lying States and Intramolecular Charge Transfers in N-Phenylpyrrole and the Planar-Rigidized Fluorazene
38. Xu, X.; Cao, Z. X.*; Zhang, Q. E.; J. Chem. Phys. 2005, 122, 194305.
DOI:http://dx.doi.org/10.1063/1.1895673
Theoretical Study of Photoinduced Singlet and Triplet Excited States of 4-Dimethylaminobenzonitrile and Its Derivatives
39. Xu, X.; Cao, Z. X.*; Zhang, R. Q.*; Zhang, Q. E.; J. Theor. Comput. Chem. 2008, 7, 719.
DOI:http://dx.doi.org/10.1142/S0219633608004088
Intramolecular Charge Transfer and Photoisomerization of the DCM Styrene Dye: A Theoretical Study