周 会副教授/博导

办公电话:010-62773188

电子邮箱:huizhou@tsinghua.edu.cn

通讯地址:北京市海淀区清华大学能源与动力工程系馆A218

邮编:100084

教育背景

2010/09-2015/07, 清华大学,热能工程系,博士

2013/11-2014/04, 英国利兹大学,访问学生

2006/08-2010/07, 清华大学,热能工程系,学士

工作履历

2023/06-至今,  清华大学,能动系,副教授

2021/07-2023/06, 清华大学,能动系,助理教授

2018/10-2021/05, 苏黎世联邦理工学院,机械与过程工程系,玛丽居里学者

2017/07-2018/09, 美国能源部艾姆斯国家实验室,博士后

2015/09-2017/07, 美国哥伦比亚大学,地球与环境工程系,博士后

学术兼职

国际碳捕集协会,副主席

Carbon Capture Science & Technology (Elsevier),执行主编

Frontiers in Energy Research (SCI),副主编

Applied Energy,客座编辑

International Conference on Carbon Capture Science and Technology 2023,大会主席

第二届碳捕集科学与技术论坛,会议主席

第十国际煤燃烧会议,副秘书长

第七届全国青年燃烧学术会议,生物质/固废专题负责人

European Commission Research Executive Agency,基金评审专家

美国化学会第256届年会生物质分论坛,主席

研究领域

主要研究领域为碳中和技术与可再生能源利用技术,具体包括:

· 生物质/废弃物资源化:生物质/废弃物的水热/热解/气化、木质素化学

· 二氧化碳捕集与转化:原位二氧化碳吸收强化制氢、催化-吸收双功能材料、二氧化碳加氢、干重整

· 可再生氢能的生产与存储:碳氢化合物重整制氢、甲醇储氢

· 能源领域的多相催化:二维材料在催化中的应用、原位表征技术

教学概况

主讲本科生通识选修课《碳中和与碳循环》,32学时,英文

能动系本科生专业课《热力设备传热与流体动力学》,32学时,中文

奖励与荣誉

2023  北市市优秀青年人才

2023  强国青年科学家(全国仅10人)

2023  未来化工学者(全球仅8人)

2023  达摩学院青橙奖“最具潜力奖”

2023  Results in Engineering杰出青年学者奖

2023  Journal of Material Chemistry新锐奖

2022  全球前2%顶尖科学家

2021  中国十大新锐科技人物

2020  国家海外高层次人才引进计划青年项目

2020  MCCA最佳创新者奖(每年仅1人)

2019  国际空气与废物协会Arthur C. Stern 杰出论文奖

2018  欧盟玛里居里学者项目

2015  Springer Nature Outstanding Thesis Award

2015  清华大学优秀博士毕业生

2015  清华大学优秀博士论文一等奖

2015  清华大学学术新秀提名奖

2015  清华大学热能系学术新秀

2015  清华大学优秀共产党员

2015  清华大学优秀研究生党员标兵

2014  清华大学“一二·九”奖学金

2014  清华大学林枫辅导员奖

2014  国家奖学金

学术成果

Publons:https://publons.com/researcher/1317419/hui-zhou/

Web of Science: https://www.webofscience.com/wos/author/record/808915

学术专著

[1] 张衍国, 周会, 龙艳秋, 李清海. 可燃固废的热解气化与燃烧. 北京: 科学出版社; 2022.

[2] Zhou H. Combustible Solid Waste Thermochemical Conversion. Springer-Nature; 2017. (ISBN 978-981-10-3826-6, 172 pages)

[3] Zhang Y, Li Q, Zhou H. Theory and Calculation of Heat Transfer in Furnaces. Elsevier; 2016. (ISBN 978-0-12-800966-6, 350 pages)

代表性期刊论文

[1] Yu S, Dong X, Zhao P, Luo Z, Sun Z, Yang X, Li Q, Wang L*, Zhang Y*, Zhou H*. Decoupled temperature and pressure hydrothermal synthesis of carbon sub-micron spheres from cellulose. Nature Communications 2022;13:3616. doi: 10.1038/s41467-022-31352-x (Editors’ Highlights)

[2] Yu S, He J, Zhang Z, Sun Z, Xie M, Xu Y, Bie X, Li Q, Zhang Y, Sevilla M, Titirici M*, Zhou H*. Towards Negative Emissions: Hydrothermal Carbonization of Biomass for Sustainable Carbon Materials. Advanced Materials 2024.

[3] Zhou H, Chen Z, López AV, López ED, Lam E, Tsoukalou A, et al. Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nature Catalysis 2021;4:860–71. doi: 10.1038/s41929-021-00684-0(封面文章)

[4] Zhou H, Chen Z, Kountoupi E, Tsoukalou A, Abdala PM, Florian P, et al. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation. Nature Communications 2021;12:5510. doi: 10.1038/s41467-021-25784-0

[5] Zhou H, Docherty SR, Phongprueksathat N, Chen Z, Bukhtiyarov AV, Prosvirin IP, et al. Combining Atomic Layer Deposition with Surface Organometallic Chemistry to Enhance Atomic-Scale Interactions and Improve the Activity and Selectivity of Cu–Zn/SiO2 Catalysts for the Hydrogenation of CO2 to Methanol. JACS Au 2023. doi: 10.1021/jacsau.3c00319

[6] Yu S, Yang X, Li Q, Zhang Y, Zhou H*. Breaking the Temperature Limit of Hydrothermal Carbonization of Lignocellulosic Biomass by Decoupling Temperature and Pressure. Green Energy & Environment 2023. doi: 10.1016/j.gee.2023.01.001 (封面论文)

[7] Zhou H, Wang H, Sadow A, Slowing I. Toward Hydrogen Economy: Selective Guaiacol Hydrogenolysis under Ambient Hydrogen Pressure. Applied Catalysis B: Environmental 2020:118890. doi: 10.1016/j.apcatb.2020.118890

[8] Zhou H, Wang H, Perras FA, Naik P, Pruski M, Sadow AD, et al. Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry 2020;22:4676–82. doi: 10.1039/D0GC01220C

[9] Zhou H*, Park AHA. Bio-Energy with Carbon Capture and Storage (BECCS) via Alkaline Thermal Treatment: Production of High Purity H2 from Wet Wheat Straw Grass with CO2 Capture. Applied Energy. 2020;264:114675. doi: 10.1016/j.apenergy.2020.114675

[10] Zhou H, Meng A, Long Y, Li Q, Zhang Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable & Sustainable Energy Reviews 2014;36:107-22. doi: 10.1016/j.rser.2014.04.024 (ESI高被引论文)


其他论文

2024

[1] Zhang S, Wu M, Qian Z, Li Q, Zhang Y, Zhou H. CO rich syngas production from catalytic CO2 gasification-reforming of biomass components on Ni/CeO2. Fuel 2024;357:130087.

[2] Xu Y, Yang Y, Wu M, Yang X, Bie X, Zhang S, et al. Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico Chimica Sinica 2024;40:2304003.

2023

[3] Xu Y, Wu M, Yang X, Sun S, Li Q, Zhang Y, et al. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bio-glycerol as carbon negative processes: A review. Carbon Capture Science & Technology 2023;8:100129.

[4] Yu S, Li Q, Zhang Y, Zhou H*. New Possibility for PET Plastic Recycling by a Tailored Hydrolytic Enzyme. Green Energy & Environment 2023. doi: 10.1016/j.gee.2023.02.007

[5] Li F, Li Y, Novoselov KS, Liang F, Meng J, Ho S-H, Zhao T, Zhou H, Ahmad A, Zhu Y, Hu L, Ji D, Jia L, Liu R, Ramakrishna S, Zhang X. Bioresource Upgrade for Sustainable Energy, Environment, and Biomedicine. Nano-Micro Lett. 2023, 15, 35.

[6] 陈荣杰, 王龙洲, 李清海, 周会, 张衍国. 响应曲面法优化木质素水热转化生产生物油. 可再生能源 2023:285–90.

[7] Chen J, Duan L, Ma Y, Jiang Y, Huang A, Zhu H, et al. Recent progress in calcium looping integrated with chemical looping combustion (CaL-CLC) using bifunctional CaO/CuO composites for CO2 capture: A state-of-the-art review. Fuel 2023;334:126630.

[8] 于士杰, 赵鹏, 刘茂清, 高宇, 李清海, 张衍国, et al. 温度-压力解耦对木质素水热过程中结构变化及解聚产物的影响. 燃料化学学报 2023;51:1–9.

[9] Xu Y, Wu M, Yang X, Sun S, Li Q, Zhang Y, et al. Recent advances and prospects in high purity H2 production from sorption enhanced reforming of bio-ethanol and bio-glycerol as carbon negative processes: A review. Carbon Capture Science & Technology 2023;8:100129.

[10] Liu Q (1), Jiang D (1), Zhou H (1), Yuan X, Wu C, Hu C, et al. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proceedings of the National Academy of Sciences 2023;120:e2305078120.

[11] Cong K, Yang F, Zhou H, Zhang Y, Li Q. A pilot-scale test facility of 500 kWth for industrial CFB boilers on low nitrogen combustion-discussion of design, experiment, and economic analysis. Energy 2023;284:128657.

2022

[12] Yang Y, Xu Y, Li Q, Zhang Y, Zhou H*. Two-dimensional Carbide/Nitride (MXenes) Materials in Thermal Catalysis. J Mater Chem A 2022;10:19444-19465.

[13] Yu S, Wang L, Li Q, Zhang Y, Zhou H*. Sustainable carbon materials from the pyrolysis of lignocellulosic biomass. Materials Today Sustainability 2022;19:100209.

[14] Yu S, Zhao P, Yang X, Li Q, Mohamed BA, Saad JM, Zhang Y, Zhou H*. Low-temperature hydrothermal carbonization of pectin enabled by high pressure. Journal of Analytical and Applied Pyrolysis 2022;166:105627.

[15] Zhang S, Yu S, Li Q, Mohamed BA, Zhang Y, Zhou H*. Insight into the relationship between CO2 gasification characteristics and char structure of biomass. Biomass and Bioenergy 2022;163:106537.

[16] Chen J, Xu Y, Liao P, Wang H, Zhou H*. Recent Progress in Integrated CO2 Capture and Conversion Process Using Dual Function Materials: A State-of-the-Art Review. Carbon Capture Science and Technology 2022;4:100052.

[17] Yu S, Zhao P, Yang X, Li Q, Zhang Y, Zhou H*. Formation and evolution of pectin-derived hydrothermal carbon from pectin. Fuel 2022;326:124997.

[18] Yu S, Xie M, Li Q, Zhang Y, Zhou H*. Evolution of kraft lignin during hydrothermal treatment under different reaction conditions. Journal of the Energy Institute 2022;103:147–53.

[19] Yang X, Zhou H, Li Q, Tan Z, Zhang Y. Characterization of blast furnace slag particles generated by nitrogen jet granulation. The Canadian Journal of Chemical Engineering 2022

[20] Yu S, Yang X, Zhao P, Li Q, Zhou H*, Zhang Y*. From biomass to hydrochar: Evolution on elemental composition, morphology, and chemical structure. Journal of the Energy Institute 2022;101:194–200.

[21] Chen R, Li H, Li K, Zhang S, Li Q, Zhou H*, et al. Hydrothermal Liquefaction of Scrap Tires: Optimization of Reaction Conditions and Recovery of High Value-Added Products. Frontiers in Energy Research 2022;10.

2021

[22] Yu S, Yang X, Xiang J, Li Q, Zhou H*, Zhang Y*. Statistical study of the distribution of voidage in a bubbling fluidized bed with a constant section. Chemical Engineering Research and Design 2021;171:305–16.

[23] Yu S, Yang X, Zhou H, Tan Z, Cong K, Zhang Y, et al. Thermal and Kinetic Behaviors during Co-Pyrolysis of Microcrystalline Cellulose and Styrene–Butadiene–Styrene Triblock Copolymer. Processes 2021;9:1335.

[24] Chen R, Zhang S, Yang X, Li G, Zhou H, Li Q, et al. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics. Waste Management 2021;126:331–9.

[25] Saad JMd, Williams PT, Zhang YS, Yao D, Yang H, Zhou H. Comparison of waste plastics pyrolysis under nitrogen and carbon dioxide atmospheres: A thermogravimetric and kinetic study. Journal of Analytical and Applied Pyrolysis 2021;156:105135.

[26] Mohamed BA, Bi X, Li LY, Leng L, Salama E-S, Zhou H. Bauxite residue as a catalyst for microwave-assisted pyrolysis of switchgrass to high quality bio-oil and biochar. Chemical Engineering Journal 2021;426:131294.

[27] Yu S, Yang X, Xiang J, Zhou H, Li Q, Zhang Y. Effects of bed size on the voidage in gas-solid bubbling fluidized beds. Powder Technology 2021;387:197–204.

2020

[28] Zhou H*, Saad J, Li Q, Xu Y. Steam reforming of polystyrene at a low temperature for high H2/CO gas with bimetallic Ni-Fe/ZrO2 catalyst. Waste Management 2020;104:42–50.

[29] Zhao M, Memon MZ, Ji G, Yang X, Vuppaladadiyam AK, Song Y, Raheem A, Li J, Wang W, Zhou H*. Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production. Renewable Energy 2020;148:168–75.

[30] Wang F, Cheng B, Ting ZJ, Dong W, Zhou H, Anthony E, et al. Two-Stage Gasification of Sewage Sludge for Enhanced Hydrogen Production: Alkaline Pyrolysis Coupled with Catalytic Reforming Using Waste-Supported Ni Catalysts. ACS Sustainable Chem Eng 2020;8:13377–86.

2019

[31] Zhao M, Wang F, Fan Y, Raheern A, Zhou H*. Low-temperature alkaline pyrolysis of sewage sludge for enhanced H-2 production with in-situ carbon capture. Int J Hydrogen Energ. 2019:44, 8020–8027.

[32] Zhao M, Cui X, Ji G, Zhou H, Vuppaladadiyam AK, Zhao X. Alkaline Thermal Treatment of Cellulosic Biomass for H 2 Production Using Ca-Based Bifunctional Materials. ACS Sustainable Chem Eng 2019;7:1202–9.

2018

[33] Surenderan L, Saad JM, Zhou H, Neshaeimoghaddam H, Abdul Rahman A. Characterization Studies on Waste Plastics as a Feedstock for Energy Recovery in Malaysia. IJET 2018;7:534.

[34] Zhou H, Naik P, Slowing I, Sadow A. Mechanism study of production of cyclohexanol/cyclohexanone from lignin-derived guaiacol catalyzed by palladium on high-surface-area ceria at mild conditions. Abstracts of Papers of the American Chemical Society 2018;256.

[35] Long Y, Li Q, Zhou H, Meng A, Zhang Y. A grey-relation-based method (GRM) for thermogravimetric (TG) data analysis. J Mater Cycles Waste Manag 2018;20:1026–35.

2017

[36] Chen X, Jiang J, Yan F, Li K, Tian S, Gao Y, et al. Dry Reforming of Model Biogas on a Ni/SiO 2 Catalyst: Overall Performance and Mechanisms of Sulfur Poisoning and Regeneration. ACS Sustainable Chemistry & Engineering 2017;5:10248–57.

[37] Zhao X (1), Zhou H (1), Sikarwar V, Zhao M, Park A, Fennell P, Shen L, Fan L. Biomass-based Chemical Looping Technologies: the Good, the Bad and the Future. Energy & Environmental Science 2017:10:1885-1910. doi: 10.1039/C6EE03718F (共同一作,封面文章, ESI高被引论文)

[38] Hou C, Wu Y, Jiao Y, Huang J, Wang T, Fang M, et al. Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing adsorption. Journal of Zhejiang University-SCIENCE A 2017;18:819–30.

[39] Li Q, Long Y, Zhou H, Meng A, Tan Z, Zhang Y. Prediction of higher heating values of combustible solid wastes by pseudo-components and thermal mass coefficients. Thermochimica Acta 2017.

[40] Long Y, Li Q, Zhou H, Meng A, Zhang Y. Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste, Pseudo-component method for characterization of the thermochemical conversion of combustible solid waste. Journal of Tsinghua University(Science and Technology) 2017;57:1324–30.

[41] Long Y, Meng A, Chen S, Zhou H, Zhang Y, Li Q. Pyrolysis and Combustion of Typical Wastes in a Newly Designed Macro Thermogravimetric Analyzer: Characteristics and Simulation by Model Components. Energy Fuels 2017;31:7582–90.

2016

[42] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Influence of process conditions on the formation of 2–4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride. Fuel Processing Technology 2016;144:299-304.

[43] Long Y, Zhou H*, Meng A, Li Q, Zhang Y. Interactions among biomass components during co-pyrolysis in (macro)thermogravimetric analyzers. Korean Journal of Chemical Engineering 2016;33:2638-43.

[44] Long Y, Zhou H, Meng A, Li Q, Zhang Y. Pseudo-component method to predict interaction features of biowaste and plastics. Abstracts of Papers of the American Chemical Society 2016;252.

[45] Long Y, Meng A, Zhou H, Qin L, Zhang Y, Li Q. Pyrolysis characteristics of 18 kinds of biomass waste. Abstracts of Papers of the American Chemical Society 2016;252.

[46] 张衍国, 蒙爱红, 周会, 龙艳秋, 武景丽. 以低二恶英排放为目标的氧化/还原气氛下可燃固体废弃物热化学转化机理. 科技创新导报 2016:162–3.

2015

[47] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis. RSC Advances 2015;5:11371-7.

[48] Zhou H, Long Y, Meng A, Chen S, Li Q, Zhang Y. A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA. RSC Advances 2015;5:26509-16.

[49] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions. Waste Management 2015;36:136-46.

[50] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel 2015;145:151-7.

[51] Zhou H, Meng A, Long Y, Li Q, Zhang Y. A review of dioxin-related substances during municipal solid waste incineration. Waste Management 2015;36:106-18.

[52] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Management 2015;38:194-200.

[53] Zhou H, Long Y, Meng A, Li Q, Zhang Y. Interactions of three municipal solid waste components during co-pyrolysis. Journal of Analytical and Applied Pyrolysis 2015;111:265-71.

[54] Xiong S, Zhuo J, Zhou H, Pang R, Yao Q. Study on the co-pyrolysis of high density polyethylene and potato blends using thermogravimetric analyzer and tubular furnace. Journal of Analytical and Applied Pyrolysis 2015;112:66–73.

[55] Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q. Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management 2015;46:247–56.

[56] Meng A, Chen S, Zhou H, Long Y, Zhang Y, Li Q. Pyrolysis and simulation of typical components in wastes with macro-TGA. Fuel 2015;157:1–8.

[57] Chen S, Meng A, Long Y, Zhou H, Li Q, Zhang Y. TGA pyrolysis and gasification of combustible municipal solid waste. Journal of the Energy Institute 2015;88:332–43.

2014

[58] Zhou H, Wu C, Onwudili JA, Meng A, Zhang Y, Williams PT. Polycyclic Aromatic Hydrocarbon Formation from the Pyrolysis/Gasification of Lignin at Different Reaction Conditions. Energy & Fuels 2014;28:6371-9.

[59] Zhou H, Wu C, Meng A, Zhang Y, Williams PT. Effect of interactions of biomass constituents on polycyclic aromatic hydrocarbons (PAH) formation during fast pyrolysis. Journal of Analytical and Applied Pyrolysis 2014;110:264-9.

[60] Zhou H, Sun J, Meng A, Li Q, Zhang Y. Effects of Sorbents on the Partitioning and Speciation of Cu During Municipal Solid Waste Incineration. Chinese Journal of Chemical Engineering 2014;22:1347-51.

[61] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Classification and comparison of municipal solid waste based on thermochemical characteristics. Journal of the Air & Waste Management Association 2014;64:597-616.

[62] Zhou H, Meng A, Long Y, Li Q, Zhang Y. Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study. Journal of Analytical and Applied Pyrolysis 2014;108:19-25.

[63] Li Q, Meng A, Li L, Zhou H, Zhang Y. Investigation of biomass ash thermal decomposition by thermogravimetry using raw and artificial ashes. Asia-Pacific Journal of Chemical Engineering 2014;9:726–36.

[64] 蒙爱红, 龙艳秋, 周会, 张衍国, 李清海. 可燃固体废弃物热化学反应表征探索. 清华大学学报(自然科学版) 2014;54:235–9.

[65] 孙进, 李清海, 李国岫, 周会, 秦岭, 张衍国. 城市生活垃圾焚烧中氯化物对铜迁移转化特性的影响. 中国电机工程学报 2014:1245–52.

2013

[66] Zhou H, Long Y, Meng A, Li Q, Zhang Y. The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves. Thermochimica Acta 2013;566:36-43.

Meng A, Zhou H, Qin L, Zhang Y, Li Q. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. Journal of Analytical and Applied Pyrolysis 2013;104:28–37.